
Design and Analysis of Algorithms
Greedy Algorithms

1 Introduction of Greedy Algorithm

2 Interval Scheduling

3 Optimal Loading

4 Scheduling to Minimizing Lateness

5 Fractional Knapsack Problem

6 Greedy Algorithm Does Not Work (not teach in class)

1 / 58

Outline

1 Introduction of Greedy Algorithm

2 Interval Scheduling

3 Optimal Loading

4 Scheduling to Minimizing Lateness

5 Fractional Knapsack Problem

6 Greedy Algorithm Does Not Work (not teach in class)

2 / 58

Motivation

A game like chess can be won only by thinking ahead
a player who is foucsed entirely on immediate advanatges is
easy to defeat.

But in many other games, such as Scrabble
it’s fine to make whichever move seems best at the moment
and not worrying too much about future consquences.

The sort of myopic behavior is easy and convinient, making it an
attractive algorithmic strategy

3 / 58

Motivation

A game like chess can be won only by thinking ahead
a player who is foucsed entirely on immediate advanatges is
easy to defeat.

But in many other games, such as Scrabble
it’s fine to make whichever move seems best at the moment
and not worrying too much about future consquences.

The sort of myopic behavior is easy and convinient, making it an
attractive algorithmic strategy

3 / 58

Greedy Algorithm

Greedy algorithm works: proof of correctness
Interval scheduling: induction on step
Optimal loading: induction on input size
Scheduling to minimum lateness: exchange argument

Greedy algorithm does not work: find a counter-example
Coin changing problem

4 / 58

Outline

1 Introduction of Greedy Algorithm

2 Interval Scheduling

3 Optimal Loading

4 Scheduling to Minimizing Lateness

5 Fractional Knapsack Problem

6 Greedy Algorithm Does Not Work (not teach in class)

5 / 58

Interval Scheduling

Input. S = {1, 2, . . . , n} is a set of n jobs, job i starts at si and
finishes at fi.

Two jobs i and j are compatible if they don’t overlaps:
si ≥ fj or sj ≥ fi

Goal: find maximum subset of mutually compatible jobs.

Instance

i 1 2 3 4 5 6 7 8

si 0 1 3 3 4 5 6 8

fi 6 4 5 8 7 9 10 11

Solution. {2, 5, 8}

6 / 58

Interval Scheduling

Input. S = {1, 2, . . . , n} is a set of n jobs, job i starts at si and
finishes at fi.

Two jobs i and j are compatible if they don’t overlaps:
si ≥ fj or sj ≥ fi

Goal: find maximum subset of mutually compatible jobs.
Instance

i 1 2 3 4 5 6 7 8

si 0 1 3 3 4 5 6 8

fi 6 4 5 8 7 9 10 11

Solution. {2, 5, 8}

6 / 58

Example

0 1 2 3 4 5 6 7 8 9 10 11
time8

7

6

5

4

3

2

1 job 4 and 7
are not compatible

7 / 58

Interval Scheduling: Greedy Algorithm

Greedy template
Consider jobs in some natural order, then take each job
provided it’s compatible with the ones already taken.
Selection strategy is short-sighted ; the order might not be
optimal

Candidate selection strategies
[Earliest start time] Consider jobs in ascending order of si
[Earliest finish time] Consider jobs in ascending order of fi
[Shortest interval] Consider jobs in ascending order of fi − si

[Fewest conflicts] For each job j, count the number of
conflicting jobs cj . Schedule in ascending order of cj .

8 / 58

Interval Scheduling: Greedy Algorithm

Greedy template
Consider jobs in some natural order, then take each job
provided it’s compatible with the ones already taken.
Selection strategy is short-sighted ; the order might not be
optimal

Candidate selection strategies
[Earliest start time] Consider jobs in ascending order of si
[Earliest finish time] Consider jobs in ascending order of fi
[Shortest interval] Consider jobs in ascending order of fi − si

[Fewest conflicts] For each job j, count the number of
conflicting jobs cj . Schedule in ascending order of cj .

8 / 58

Counterexample for Earliest Start Time

9 / 58

Counterexample for Shortest Interval

10 / 58

Counterexample for Fewest Conflicts

11 / 58

Greedy Algorithm: Earliest-Finish-Time-First

Algorithm 1: GreedySelect(S, si, fi, i ∈ [n])

Output: maximum compatible subset A ⊆ S
1: Sort jobs by finish time so that f1 ≤ · · · ≤ fn;
2: n← |S|;
3: A← ∅;
4: for i ≤ 1 to n do
5: if job i is compatible with A then A← A ∪ {i};
6: end
7: return A;

Q. How to decide job i is compatible with A?
A. Keep track of job j∗ that was last added to A. Job i is
compatible with A iff si ≥ fj∗ holds.

12 / 58

Demo of Earliest Finish Time First

Input. S = {1, 2, . . . , 8}

i 1 2 3 4 5 6 7 8

si 0 1 3 3 4 5 6 8

fi 6 4 5 8 7 9 10 11

Solution. A = {2, 4, 8}
Complexity. overall Θ(n logn)

Sorting by finish time: Θ(n logn)
Compare to check compatible: O(n)

Lemma. Earliest-finish-time-first algorithm always give the correct
solution.

How to prove it?
13 / 58

Mathematic Induction for Greedy Algorithm

Proof template for greedy algorithm

1 Describe the correctness as a proposition about natural
number n, which claims greedy algorithm yields correct
solution.

Here, n could be the algorithm steps or input size.

2 Prove the proposition is true for all natural number.
Induction basis: from the smallest instance
Induction steps: type 1 or type 2 induction

14 / 58

Proposition for Earliest-Finish-Time-First

Let S be the job set of size n, si and fi are the start time and
finish time, A be a maximum compatible subset of S.

Proposition. When algorithm GreedySelect carries on the k-th
step, it choose k jobs (i1 = 1, i2, . . . , ik), which is exactly the first
k jobs of A.

According the above proposition, ∀k, the first k-step choice is
exactly the first k-jobs of some maximum compatible subset A,
and will yield A in at most n steps.

15 / 58

Mathematic Induction: Induction Basis

Let S = {1, 2, . . . , n} be the sorted job set: f1 ≤ · · · ≤ fn

Induction basis. k = 1, prove A includes job 1

For an arbitrary maximum compatible subset A, sort jobs in A in
ascending order according to the finish time.
If the first job in A is j and j ̸= 1, then replace job j with job 1,
yielding A′:

A′ = (A− {j}) ∪ {1}

1 won’t appear in (A− {j}) ⇒ |A| = |A′|
f1 ≤ fj ⇒ replacement does not affect compatibility ⇒ A′ is
also one of the maximum compatible subset of A and includes
job 1.

j . . . A

1 . . . A′

16 / 58

Mathematic Induction: Induction Basis

Let S = {1, 2, . . . , n} be the sorted job set: f1 ≤ · · · ≤ fn

Induction basis. k = 1, prove A includes job 1

For an arbitrary maximum compatible subset A, sort jobs in A in
ascending order according to the finish time.
If the first job in A is j and j ̸= 1, then replace job j with job 1,
yielding A′:

A′ = (A− {j}) ∪ {1}

1 won’t appear in (A− {j}) ⇒ |A| = |A′|
f1 ≤ fj ⇒ replacement does not affect compatibility ⇒ A′ is
also one of the maximum compatible subset of A and includes
job 1.

j . . . A

1 . . . A′

16 / 58

Mathematic Induction: Induction Basis

Let S = {1, 2, . . . , n} be the sorted job set: f1 ≤ · · · ≤ fn

Induction basis. k = 1, prove A includes job 1

For an arbitrary maximum compatible subset A, sort jobs in A in
ascending order according to the finish time.
If the first job in A is j and j ̸= 1, then replace job j with job 1,
yielding A′:

A′ = (A− {j}) ∪ {1}

1 won’t appear in (A− {j}) ⇒ |A| = |A′|
f1 ≤ fj ⇒ replacement does not affect compatibility ⇒ A′ is
also one of the maximum compatible subset of A and includes
job 1.

j . . . A

1 . . . A′

16 / 58

Mathematic Induction: Induction Step
Assume Proposition is true for k, prove it is also true for k + 1

(k + 1)-step choice job ik+1 and (i1, . . . , ik) forms the first
k + 1 jobs of some A for S.

Proof. After k steps, algorithm chooses i1 = 1, i2, . . . , ik.
Premise ⇒ ∃ a maximum compatible A that contains i1, i2, . . . , ik.

Let B the set of other elements in A (already sorted and not
empty), and S′ be the set of compatible elements w.r.t.
{i1, i2, . . . , ik}.

A = {i1, i2, . . . , ik} ∪B

S′ = {i | i ∈ S, si ≥ fk}

i1, i2, . . . , ik
compatible set

S′
B incompatible

set

A

17 / 58

Consider two cases according to if job ik+1 is the 1st job in B.

If ik+1 happens to the first job in B, then the desired result
immediately follows, (k + 1)-step choice still yields the partial
solution of A.
If ik+1 is not the first job in B, then we must have ik+1 /∈ B

the strategy choice of the greedy algorithm ⇒ the finishes time
of ik+1 must be earlier than the first job in B
At this point, we can replace the first job in B with job ik+1,
yielding B′. Obviously, |B′| = |B|.

{i1, i2, . . . , ik} ∪B′ = A′

Note that |A| = |A′| ⇒ A′ is still a maximum compatible set
of S. This proves the induction step.

i1, i2, . . . , ik

candidate
compatible

set S′

A

ik+1 Bik+1B′

18 / 58

Consider two cases according to if job ik+1 is the 1st job in B.
If ik+1 happens to the first job in B, then the desired result
immediately follows, (k + 1)-step choice still yields the partial
solution of A.

If ik+1 is not the first job in B, then we must have ik+1 /∈ B
the strategy choice of the greedy algorithm ⇒ the finishes time
of ik+1 must be earlier than the first job in B
At this point, we can replace the first job in B with job ik+1,
yielding B′. Obviously, |B′| = |B|.

{i1, i2, . . . , ik} ∪B′ = A′

Note that |A| = |A′| ⇒ A′ is still a maximum compatible set
of S. This proves the induction step.

i1, i2, . . . , ik

candidate
compatible

set S′

A

ik+1 B

ik+1B′

18 / 58

Consider two cases according to if job ik+1 is the 1st job in B.
If ik+1 happens to the first job in B, then the desired result
immediately follows, (k + 1)-step choice still yields the partial
solution of A.
If ik+1 is not the first job in B, then we must have ik+1 /∈ B

the strategy choice of the greedy algorithm ⇒ the finishes time
of ik+1 must be earlier than the first job in B
At this point, we can replace the first job in B with job ik+1,
yielding B′. Obviously, |B′| = |B|.

{i1, i2, . . . , ik} ∪B′ = A′

Note that |A| = |A′| ⇒ A′ is still a maximum compatible set
of S. This proves the induction step.

i1, i2, . . . , ik

candidate
compatible

set S′

A

ik+1 B

ik+1B′

18 / 58

Outline

1 Introduction of Greedy Algorithm

2 Interval Scheduling

3 Optimal Loading

4 Scheduling to Minimizing Lateness

5 Fractional Knapsack Problem

6 Greedy Algorithm Does Not Work (not teach in class)

19 / 58

Optimal Loading Problem

Problem. Given n containers with weight wi and a boat with
maximum weight capacity W (no volume limit).

Goal. A loading plan that maximizes the number of containers on
the ship.

Analysis. This problem is a special case of 0-1 knapsack problem.
item: container
boat: knapsack
all vi = 1

20 / 58

Modeling

Let (x1, x2, . . . , xn) be the solution vector, xi ∈ {0, 1}.
xi = 1 iff i-th container is on the boat

Goal function:
max

n∑
i=1

xi

Constraint:
n∑

i=1

wixi ≤W,xi = {0, 1}, i ∈ [n]

21 / 58

Algorithm Design

Greedy strategy. lightest first

Algorithm steps
sorting container according to weight in ascending order, to
ensure w1 ≤ w2 ≤ · · · ≤ wn

loading the container from the smallest label, and stop until
loading next container will exceed the limit

22 / 58

Proof of Correctness (Induction on Input Size)

Lemma. ∀ input size n, the algorithm yields the correct solution.

Let S = {1, 2, . . . , n} be the set of containers that has been sorted
in ascending order, and w1 ≤ w2 ≤ · · · ≤ wn.

Induction basis. Prove when the input size n = 1 (there is
only one container), the greedy algorithm will yield the correct
solution. Obviously hold.
Induction steps. Prove if the greedy algorithm yield optimal
solution for input size n, it will also yield optimal solution for
input size n+ 1.

23 / 58

Analysis of Greedy Algorithm: Interpretation

S = {1, 2, . . . , n+ 1}, w1 ≤ · · · ≤ wn+1

if W < w1, return S = {⊥}

else remove container 1, let W ′ = W − w1

input size is n: S′ = {2, 3, . . . , n+ 1}

optimal solution I ′

for (S′,W ′)

I ← {I ′} ∪ {1}

prove I is the optimal solution for (S,W)

24 / 58

Correctness Proof (1/2)

Premise of induction: greedy strategy will yield optimal solution for
input size n, consider input size n+ 1

S = {1, 2, . . . , n+ 1}, w1 ≤ w2 ≤ · · · ≤ wn+1

Premise of induction ⇒ for input size n

S′ = {2, . . . , n+ 1},W ′ = W − w1

Greedy strategy yields optimal solution I ′ for (S′,W ′).

Let I = I ′ ∪ {1}.

25 / 58

Correctness Proof (2/2)

Claim. I is the optimal solution for (S,W).
Proof by contradiction. If not, suppose there exists an optimal
solution I∗ for (S,W) and |I∗| > |I|.

Assume w.l.o.g. 1 ∈ I∗, since otherwise we can replace 1 with
the first container in I∗, also yield the optimal solution.
I∗ − {1} forms a solution for (S′, C ′) and

|I∗ − {1}| > |I − {1}| = |I ′|

The existence of I∗ contradicts to the premise that I ′ is the
optimal solution for (S′,W ′).

I 1 I − {1}

I∗ 1 I∗ − {1}

⇒
I − {1}

I∗ − {1}

not optimal
contradict!

26 / 58

Summary

0-1 knapscak is an NP-hard problem
optimal loading is a variant of 0-1 knapscak problem, and can
be solevd using greedy algorithm efficiently

Correctness proof. Induction on input size

27 / 58

Outline

1 Introduction of Greedy Algorithm

2 Interval Scheduling

3 Optimal Loading

4 Scheduling to Minimizing Lateness

5 Fractional Knapsack Problem

6 Greedy Algorithm Does Not Work (not teach in class)

28 / 58

Scheduling to Minimizing Lateness

Minimizing lateness problem (最小延迟调度)
A job set A, single resource processes one job at a time, all
jobs come in at time 0

Job j requires tj units of processing time and is due at time
dj (ddl). Clearly, tj ≤ dj .
If job j starts at time sj , it finishes at time fj = sj + tj .
Scheduling: S : A→ N, S(j) = sj is the start time of job j.
Lateness: Lateness function computes the lateness of job:

L(j) = ℓj = max{0, fj − dj} = max{0, sj + tj − dj}

0 sj fj = sj + tj

dj

29 / 58

Goal. Schedule all jobs to minimize maximum lateness

min{max
j∈A

ℓj} = min{max
j∈A
{max{0, sj + tj − dj}}}

Constraint. No overlap

∀i, j ∈ A, i ̸= j

si + ti ≤ sj ∨ sj + tj ≤ si

30 / 58

Example 1

A 1 2 3 4 5

S 0 5 13 17 27

T 5 8 4 10 3

D 10 12 15 11 20

L 0 1 2 16 10

Table: Sequential scheduling

0

5 13 17 27 30

1 2 3 4 5

31 / 58

Example 2

A 1 4 2 3 5

S 0 5 15 23 27

T 5 10 8 4 3

D 10 11 12 15 20

L 0 4 11 12 10

Table: Earliest-deadline first

0

5 15 23 27 30

1 4 2 3 5

32 / 58

Minimizing Lateness: Greedy Algorithms

Greedy template. Schedule jobs according to some natural order.
[Shortest processing time first] Schedule jobs in ascending
order of processing time tj .
A 1 2

T 1 10

D 100 10

ℓ1 = 0, ℓ2 = 11− 10 = 1

ℓ2 = 0, ℓ1 = 0 (better)

[Smallest slack] Schedule jobs in ascending order of slack
dj − tj .

A 1 2

T 1 10

D 2 10

ℓ2 = 10− 10 = 0, ℓ1 = 11− 2 = 9

ℓ1 = 0, ℓ2 = 10 + 1− 10 = 1 (better)

33 / 58

Minimizing Lateness: Earliest Deadline First

Algorithm 2: Schedule(A, T,D)

1: sort n jobs in A so that d1 ≤ d2 ≤ · · · ≤ dn;
2: t← 0 //from time 0;
3: for j = 1 to n do
4: assign job j to interval [t, t+ tj];
5: sj ← t;
6: fj ← t+ tj ;
7: t← t+ tj
8: end
9: return intervals [s1, f1], . . . , [sn, fn]

Main idea
earliest deadline first
assign jobs one after another, no idle time

34 / 58

Correctness Proof: Exchange Argument

Proof sketch
Analyze the difference between optimal solution and algorithm
solution (e.g. different order)
Design a transform operation (e.g. swap), thus we can
gradually convert an optimal solution to algorithm solution in
finite steps.
The transformation does not affect optimality of solution,
since every step preserving optimality.

In this case, two properties of greedy algorithm solution:
No idle time: every time there is a job being processed
No inversion. We say (i, j) forms an inversion if di > dj but
si < sj

35 / 58

Key Lemma about Algorithm Solution

Lemma. All schedulings with no inversion and idle time (a.k.a.
possible algorithm solutions) have the same minimize maximal
lateness time.

Proof. The lemma is not trivial since scheduling satisfying the
above requirement is not unique. It is possible that several jobs
has the same deadline.
Assume there is no inversion in S, jobs i1, i2, . . . , ik with the same
deadline d are assigned arbitrarily. (green parts are identical)

The start time is t0, the finish time for all these jobs is t,
among this jobs, the maximal lateness is max{0, t− d} ⇐
irrelevant to the order of i1, i2, . . . , ik.

t = t0 + (ti1 + ti2 + · · ·+ tik)

i1, i2, . . . , ik

t0 d t

36 / 58

Examine the Optimal Solution

Observation. There always exists an optimal schedule with no idle
time.

0 1 2 3 4 5 6 7 8 9 10 11

d = 4 d = 6 d = 12

0 1 2 3 4 5 6 7 8 9 10 11

d = 4 d = 6 d = 12

Algorithm solution: the earliest-deadline-first schedule has no
idle time.

We have eliminate one difference between optimal solution
and algorithm solution.
There is another one: inversion

37 / 58

Minimizing Lateness: Inversions

Inversion. Given a schedule S, an inversion is a pair of jobs i and j
such that di < dj but j scheduled before i, i.e., sj < si.

j i

inversion

Figure: As before, jobs are numbered so that d1 ≤ d2 ≤ · · · ≤ dn

Algorithm solution: the earliest-deadline-first schedule has no
inversions.

Fact. If a schedule (with no idle time) has an inversion, it has at
least one pair of inverted jobs scheduled consecutively. (according
to definition)

38 / 58

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs reduces the number
of inversions by one and does not increase the max lateness.

j i

t∗
inversion

swap
i j

Proof. Let ℓ be the lateness before the swap, ℓ′ be it afterwards.
i↔ j does not affect the latest time of other jobs: ℓ′k = ℓk
for all k ̸= i, j

ℓ′i ≤ ℓi (because job i has been moved forwards)
ℓ′j = max{0, t∗ − dj} (definition), i and j are inverted ⇒
di < dj , thus ℓ′j ≤ max{0, t∗ − di} = ℓi

⇒ max{ℓi, ℓj} ≥ max{ℓ′i, ℓ′j}

39 / 58

Putting All the Above Together

Theorem. The earliest-deadline-first schedule S is optimal.

Proof. Define S∗ to be an optimal schedule that has the fewest
number of inversions, and let’s see what happens.

Can always assume S∗ has no idle time.
If S∗ has no inversions, then key lemma S ∼ S∗, stop here.
If S∗ has an inversion, let i↔ j be an adjacent inversion.
Swapping i and j:

does not increase the max lateness
strictly decreases the number of inversions

Continue the above process until there is no inversion, we can
also conclude that S ∼ S∗.

Max number of inversion is n(n− 1)/2 (completely inverted),
thus the transformation will stop in finite steps.

40 / 58

Summary of Greedy Analysis Trick

Analysis. Find the difference between optimal solution and
algorithm solution.

Exchange argument. Gradually transform an optimal solution to
the one found by the greedy algorithm.

at most require finite steps (seems unnecessary)
each step of transformation does not hurt its quality

41 / 58

Outline

1 Introduction of Greedy Algorithm

2 Interval Scheduling

3 Optimal Loading

4 Scheduling to Minimizing Lateness

5 Fractional Knapsack Problem

6 Greedy Algorithm Does Not Work (not teach in class)

42 / 58

Fractional Knapsack Problem

Input. Given n items with weight vector (w1, . . . , wn) and value
vector (v1, . . . , vn), and weight limit W > 0.
Goal. Find x = (p1, . . . , pn) ∈ [0, 1]n (choose some fractions of n
items) to satisfy:

Optimized goal: maximizes
∑n

i=1 pivi

Constraint:
∑n

i=1wipi ≤W

The difference is that now the items are infinitely divisible.

43 / 58

Greedy Algorithm

Greedy strategy. greatest value-per-weight ratio first
Algorithm

Sort n items according to the decending order of
value-per-weight ratio αi = vi/wi.
iteratively picks the item with the greatest value-per-weight
ratio
if, at some step, the knapsack cannot fit the entire last item
with current greatest value-per-weight ratio items, we will
take a fraction of it to fill the knapsack.

44 / 58

Correctness Proof (1/3)

Lemma. ∀ input size n, the algorithm yields the optimal solution.

Proof idea. Mathematical reduction on input size.
Induction basis. When n = 1, the greedy algorithm is obviously the
optimal solution.
Induction step. Suppose the algorithm is optimal for n = k, then it
is also optimal for n = k + 1.

Let p1 be the algorithm’s output for the first item,
I ′ = (p2, . . . , pk+1) be the output on instance (w2, . . . , wk+1),
(v2, . . . , vk+1), and W − p1w1.
According to the induction premise, I ′ is the optimal solution
of the above sub-instance of size n = k. Let I = p1 ∪ I ′.

Claim. Then, we claim I is the optimal solution for n = k + 1.

45 / 58

Correctness Proof (2/3)

Proof by contradiction. If not, suppose there exists a more optimal
solution I∗ with maximal value V ∗.
Prove the first element p∗1 of I∗ must be equal to p1 of I.

1 p∗1 = p1: we have nothing to prove.
2 p∗1 > p1 is impossible, because the greedy strategy guarantees

that p1 of I is as large as possible.
3 If p∗1 < p1, we can always increase it to p1 by decreasing total

weight of its remaining k items by ∆ = (p1 − p∗1)w1. Note
that such adjustment makes sense since the total weight of
the remaining k items must be larger than ∆. Otherwise, we
must have V ∗ < V , which is not possible by premise. We
then consider two sub-cases after adjustment:

The total value is unchanged. This is only possible when there
exists at least one more item j such that αj = α1.
The total value is higher. In this case, we must have there is
no j such that αj = α1. However, this case will never occur
since it goes against the assumed optimality of I∗.

46 / 58

Correctness Proof (3/3)

We conclude that either p∗1 = p1 or we can adjust it to this case
without compromising optimality.

I∗ − {p1} forms a solution for W − p∗1w1 = W − p1w1 with
items (2, . . . , n + 1) with total value V ∗ − α1p1 > V − α1p1; contradicts the optimality of I ′

This proves I is the optimal solution for input size n = k + 1.

47 / 58

Outline

1 Introduction of Greedy Algorithm

2 Interval Scheduling

3 Optimal Loading

4 Scheduling to Minimizing Lateness

5 Fractional Knapsack Problem

6 Greedy Algorithm Does Not Work (not teach in class)

48 / 58

What if Greedy Algorithm Does not Work

Input analysis
Determine the range of input that greedy strategy works.

Error analysis
Greedy algorithm is the approximation algorithm of the
problem: estimate the distance between greedy solution and
optimal solution (the upper bound over all inputs)

49 / 58

Coin Changing Problem

Coin changing. Given n currency denominations
v1 = 1, v2, . . . , vn, v1 < v2 < · · · < vn,
weight w1, w2, ..., wn.

Goal. Devise a method to pay amount y using coins with lightest
weight.

Example. v1 = 1, v2 = 5, v3 = 14, v4 = 18, wi = 1, i ∈ [n],
y = 28. In this case, the problem is equivalent to using fewest
number of coins.
Solution.: x3 = 2, x1 = x2 = x4 = 0, total weight is 2.

50 / 58

Modeling

Let xi be the number of coin i, i ∈ [n]

Goal function.

min
{

n∑
i=1

wixi

}

Constraint.
n∑

i=1

vixi = y, xi ∈ N, i ∈ [n]

Next, we consider a special case: wi = 1 for all i ∈ [n].

51 / 58

Dynamic Programming

Fk(y): the lightest weight using first k types of coins to pay
amount y
The iteration equation

{
Fk(y) = min0≤xk≤⌊ y

vk
⌋{Fk−1(y − vkxk) + 1 · xk}

F1(y) =
y
v1

= y

Dynamic programming requires the domination of the first
coin is 1 to ensure the constraint can always be met.
Dynamic programming always give the optimal solution.

52 / 58

Greedy Algorithm

Strategy. Smallest wi/vi coin first. Since all wi = 1, this means
largest domination coin first and v1 = 1.

1

v1
>

1

v2
> · · · > 1

vn

Gk(y): greedy solution of using first k types coins to pay y

{
Gk(y) =

⌊
y
vk

⌋
+Gk−1(y mod vk), k > 1

G1(y) =
y
v1

= y

Thinking. Why we require all wi = 1? Otherwise, we cannot
guarantee v1 = 1 appears at first place in line with greedy
algorithm’s input order. Looking ahead, we will use dynamic
programming as a reference.

53 / 58

n = 1, 2: Greedy Strategy Yield Optimal Solution

n = 1: only one type of coin and we must have v1 = 1.
In this case, F1(y) = G1(y) = w1y

n = 2: for dynamic programming algorithm, the larger is x2, the
better is the solution

F2(y) = min
0≤x2≤⌊y/v2⌋

{F1(y − v2x2) + x2}

Goal: prove F2(y) = G2(y)

Technique: decide the monotonicity of function F1(y − v2x2) + x2
about x2

[F1(y − v2(x2 + δ)) + (x2 + δ)]− [F1(y − v2x2) + x2]

=[(y − v2x2 − v2δ) + x2 + δ]− [(y − v2x2) + x2]

=− v2δ + δ = δ(1− v2) < 0

This proves the greedy that choice is optimal for n = 2.
54 / 58

Criteria

Theorem. Let n0 be an integer. Suppose ∀k ≤ n0, Gk(y) = Fk(y)
for all y ∈ N. Let (p, δ) be the tuple such that vk+1 = pvk − δ,
where 0 ≤ δ < vk, vk < vk+1, p ∈ Z+.
The following propositions are equivalent:

1 Gk+1(y) = Fk+1(y) for all y ∈ Z+;
2 Gk+1(pvk) = Fk+1(pvk) (can be used to give counterexample)
3 1 +Gk(δ) ≤ p (can be used to decide if the first statement

holds)

The uniqueness of (p, δ):
Since vk+1 > vk, vk+1 can be uniquely expressed as p′vk + η,
where 0 ≤ η < vk.
p′vk + η = (p′ + 1)vk − (vk − η). Set p′ + 1 = p, vk − η = δ.
The uniqueness of (p′, η) implies the uniqueness of (p, δ).

55 / 58

Some Remarks

By the equivalence of (1) and (3), we can decide if greedy
algorithm gives the optimal solution for k ≥ 3.

Verifying the truth of statement (3) requiring O(k) complexity.

Statement (2) is a special case of proposition (1) when y = pvk.

Statement (1) is true ⇒ Statement (2) is true
Statement (2) is false ⇒ Statement (1) is false

The amount y = pvk provide a counterexample for the correctness
of greedy algorithm.

56 / 58

Demo: n = 3

vk+1 = pvk − δ, 0 ≤ δ < vk, p ∈ Z+

proposition (3) : 1 +Gk(δ) ≤ p

Example. v1 = 1, v2 = 5, v3 = 14, v4 = 18.
∀y: G1(y) = F1(y), G2(y) = F2(y)

Decide if G3(y) = F3(y)

To utilize proposition (3), we first compute tuple (p, δ):
v3 = pv2 − δ ⇒ p = 3, δ = 1

1 +G2(δ) = 1 + 1 = 2 ≤ 3 = p

Conclusion: proposition (3) is true thus greedy algorithm still
works for n = 3.

57 / 58

Demo: n = 4

Example. v1 = 1, v2 = 5, v3 = 14, v4 = 18.
∀y we have: G1(y) = F1(y), G2(y) = F2(y), G3(y) = F3(y)

Decide if G4(y) = F4(y)

To utilize proposition (3), we first compute tuple (p, δ):
v4 = pv3 − δ ⇒ p = 2, δ = 10

1 +G3(δ) = 1 + 2 > p = 2

Conclusion: proposition (3) is false thus greedy algorithm does not
work for n = 3.
Counterexample is give by proposition (2), i.e. n = 4,
y = pv3 = 28

Optimal solution x3 = 2 vs. Greedy solution (x4 = 1, x2 = 2)

58 / 58

	Introduction of Greedy Algorithm
	Interval Scheduling
	Optimal Loading
	Scheduling to Minimizing Lateness
	Fractional Knapsack Problem
	Greedy Algorithm Does Not Work (not teach in class)

